Satellite Rendezvous and Conjunction Avoidance: Case Studies in Verification of Nonlinear Hybrid Systems

نویسندگان

  • Taylor T. Johnson
  • Jeremy Green
  • Sayan Mitra
  • Rachel Dudley
  • Richard Scott Erwin
چکیده

Satellite systems are beginning to incorporate complex autonomous operations, which calls for rigorous reliability assurances. Human operators usually plan satellite maneuvers in detail, but autonomous operation will require software to make decisions using noisy sensor data and problem solutions with numerical inaccuracies. For such systems, formal verification guarantees are particularly attractive. This paper presents automatic verification techniques for providing assurances in satellite maneuvers. The specific reliability criteria studied are rendezvous and conjunction avoidance for two satellites performing orbital transfers. Three factors pose challenges for verifying satellite systems: (a) incommensurate orbits, (b) uncertainty of orbital parameters after thrusting, and (c) nonlinear dynamics. Three abstractions are proposed for contending with these challenges: (a) quotienting of the state-space based on periodicity of the orbital dynamics, (b) aggregation of similar transfer orbits, and (c) overapproximation of nonlinear dynamics using hybridization. The method’s feasibility is established via experiments with a prototype tool that computes the abstractions and uses existing hybrid systems model checkers.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Verifying safety of an autonomous spacecraft rendezvous mission

A fundamental maneuver in autonomous space operations is known as rendezvous, where a spacecraft navigates to and approaches another spacecraft. In this case study, we present linear and nonlinear benchmark models of an active chaser spacecraft performing rendezvous toward a passive, orbiting target. The system is modeled as a hybrid automaton, where the chaser must adhere to different sets of ...

متن کامل

Formal Verification of Curved Flight Collision Avoidance Maneuvers

Aircraft collision avoidance maneuvers are important and complex applications. Curved flight exhibits nontrivial continuous behavior. In combination with the control choices during air traffic maneuvers, this yields hybrid systems with challenging interactions of discrete and continuous dynamics. As a case study illustrating the use of a new proof assistant for a logic for nonlinear hybrid syst...

متن کامل

Formal Verification of Curved Flight Collision Avoidance Maneuvers: A Case Study

Aircraft collision avoidance maneuvers are important and complex applications. Curved flight exhibits nontrivial continuous behavior. In combination with the control choices during air traffic maneuvers, this yields hybrid systems with challenging interactions of discrete and continuous dynamics. As a case study illustrating the use of a new proof assistant for a logic for nonlinear hybrid syst...

متن کامل

Control of nonlinear systems using a hybrid APSO-BFO algorithm: An optimum design of PID controller

This paper proposes a novel hybrid algorithm namely APSO-BFO which combines merits of Bacterial Foraging Optimization (BFO) algorithm and Adaptive Particle Swarm Optimization (APSO) algorithm to determine the optimal PID parameters for control of nonlinear systems. To balance between exploration and exploitation, the proposed hybrid algorithm accomplishes global search over the whole search spa...

متن کامل

SECURING INTERPRETABILITY OF FUZZY MODELS FOR MODELING NONLINEAR MIMO SYSTEMS USING A HYBRID OF EVOLUTIONARY ALGORITHMS

In this study, a Multi-Objective Genetic Algorithm (MOGA) is utilized to extract interpretable and compact fuzzy rule bases for modeling nonlinear Multi-input Multi-output (MIMO) systems. In the process of non- linear system identi cation, structure selection, parameter estimation, model performance and model validation are important objectives. Furthermore, se- curing low-level and high-level ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012